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Abstract
A generalized Camassa–Holm equation containing a nonlinear dissipative
effect is investigated. The existence of the weak solution of the equation
in lower order Sobolev space Hs with 1 < s � 3

2 is established by using the
techniques of the pseudoparabolic regularization and some a priori estimates
derived from the equation itself.
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Mathematics Subject Classification: 35B10, 35Q35

1. Introduction

Camassa and Holm [3] proposed the following model equation for shallow water waves:

ut − uxxt + 3uux + 2kux = 2uxuxx + uuxxx. (1)

Alternative derivations of the equation as a model equation for water waves were made in
[4] and [13]. It was shown in [3] that for all k, equation (1) is integrable. The inverse
spectral or scattering approach was employed in [5] to study the equation. For k = 0, it
is shown that equation (1) has traveling wave solutions of the form c e−|x−ct | which, called
peakons, capture an essential feature of the traveling waves of largest amplitude (see [21]).
Equation (1) possesses bi-Hamiltonian structure and admits an infinite hierarchy of symmetries
and conservation laws [1]. We should also address here that equation (1) is, in fact, a re-
expression of geodesic flow (see Kouranbaeva [15] and Misiolek [19]), and this geometric
interpretation leads to a proof that the least action principle holds (see [6]).

Recently, a lot of work has been carried out to study the properties and solutions of
equation (1). Lennels [17] showed that, in addition to smooth solutions of (1), there exists
a multitude of traveling waves with singularities such as peakons, cuspons, stumpons and
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composite waves. Wazwaz [22] obtained solitary wave solutions of (1) that include peakons,
kinks, compactons, solitary pattern solutions and plane periodic solutions. The qualitative
changes in the physical structures of the obtained solutions were shown in [22]. Hakkaev
et al [12] investigated the existence and stability of periodic traveling wave solutions for the
generalized Camassa–Holm and Benjamin–Bona–Mahony equations. The abstract results
of Grillakis–Shatah–Strauss and the Floquet theory for periodic eigenvalue problems were
employed in [12] to show orbital stability. Determinant formulas of N-soliton solutions of
the continuous and semi-discrete Camassa–Holm equations are presented in Ohta et al [20]
to generate multi-soliton, multi-cuspon and multi-soliton–cuspon solutions. Existence and
uniqueness results for global weak solutions of (1) have been given in [9, 24, 25]. The
sharpest results for the global existence and blowup solutions are found in [2]. Applying the
Galerkin method and the Leray–Schauder fixed point theorem, Fu and Guo [10] investigated
the existence and uniqueness of a time periodic solution for a class of viscous Camassa–Holm
equation with periodic boundary conditions. Li and Olver [18] established the local well
posedness in the Sobolev space Hs(R) with s > 3

2 for equation (1) and gave conditions
on the initial data that led to finite time blowup of certain solutions. It was shown that the
blowup occurs in the form of breaking waves, namely, the solution remains bounded but its
slope becomes unbounded in finite time (see [5]). Lai and Xu [16] analyzed the compact and
noncompact structures for two types of generalized Camassa–Holm–KP equations. For other
methods to handle the problems related to the Camassa–Holm equation and functional spaces,
the reader is referred to [7–9, 11, 26] and the references therein.

In this paper, we study the equation

ut − utxx + ∂xf (u) = 2αuxuxx + αuuxxx + βu2muxx, (2)

where α > 0 and β � 0 are constants, and f (u) is an (n + 1)st-order polynomial with
f (u) = ∑n+1

j=1 aju
j and m is a natural number. Since the nonlinear term βu2muxx appears in

equation (2), the conservation laws in previous work [18] for equations (1) lose their power
to obtain some bounded estimates of the solution for equation (2). A new conservation law
different from those presented in [18] will be established to prove the existence of weak
solutions for equation (2) associated with the initial value u0(x) ∈ Hs(R). We should also
address that all the generalized versions of the Camassa–Holm equation in previous works
[16, 26] do not involve the nonlinear term u2muxx . In addition, for an arbitrary positive
Sobolev exponent, a lemma (see lemma 4.4 in section 4), which is similar to that presented
in [1] where the Sobolev exponent is required to be greater than 3

2 , is established to prove the
existence of solutions of the problem in the lower order Sobolev space Hs with 1 < s � 3

2 .

2. Notation

The space of all infinitely differentiable functions φ(x, t) with compact support in R×[0, +∞)

is denoted by C∞
0 . We let p be any constant with 1 � p < +∞ and Lp be the space of all

measurable functions h(x, t) such that ‖h‖p

Lp = ∫
R

|h(x, t)|p dx < ∞. We define that L∞

consists of all essentially bounded Lebesque measurable functions h with the standard norm
‖h‖L∞ = infm(e)=0 supx∈R\e |h(x, t)|. For any real number s, we let Hs denote the Sobolev
space consisting of all tempered distributions h such that

‖h‖Hs =
(∫

R

(1 + |ξ |2)s |ĥ(ξ, t)|2 dξ

) 1
2

< ∞,

2
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where ĥ(ξ, t) = ∫
R

e−ixξh(x, t) dx. Let C([0, T ];Hs(R)) denote the class of continuous

functions from [0, T ] to Hs(R) and � = (
1−∂2

x

) 1
2 . Here we note that the norms ‖h‖p

Lp , ‖h‖L∞

and ‖h‖Hs depend on time t ∈ [0,∞).
For simplicity, throughout this paper, we let c denote any positive constant which is

independent of the parameter ε.

3. Well posedness of solutions for the regularized equation

In this section, we study the existence of solutions for equation (2) by considering its
regularized equation with an initial condition in the form{

ut − utxx + εuxxxxt = −[f (u)]x + 2αuxuxx + αuuxxx + βu2muxx,

u(x, 0) = u0(x),
(3)

where 0 < ε < 1
4 . For problem (3), we have the local well-posedness theorem.

Theorem 3.1. Let u0(x) ∈ Hs(R) with s � 1. Then there exists a unique solution
u(x, t) ∈ C([0, T ];Hs(R)) where T > 0 depends on ‖u0‖Hs(R). If s � 2, the solution
u ∈ C([0, +∞);Hs(R)) exists for all time.

Proof. We write the first equation in problem (3) in the form(
1 − ∂2

x + ε∂4
x

)
ut = −(f (u))x +

α

2

(
∂3
xu2 − ∂x

(
u2

x

))
+ βu2muxx. (4)

Let D = (
1 − ∂2

x + ε∂4
x

)−1
; then D : Hs → Hs+4 is a bounded linear operator. Applying

the operator D to both sides of equation (4) and then integrating the resultant equation with
respect to t over the interval (0, t) leads to

u(x, t) = u0(x) +
∫ t

0
D

[
−(f (u))x +

α

2

(
∂3
xu2 − ∂x

(
u2

x

))
+ βu2muxx

]
dt. (5)

Suppose that both u and v are in the closed ball BM0(0) of radius M0 > 1 about the zero
function in C([0, T ];Hs(R)) and A is the operator on the right-hand side of (5), for fixed
t ∈ [0, T ]; we get∥∥∥∥ ∫ t

0
D

[
(−f (u))x +

α

2

(
∂3
xu2 − ∂x

(
u2

x

))
+ βu2muxx

]
dt

−
∫ t

0
D

[
(−f (v))x +

α

2

(
∂3
x v2 − ∂x

(
v2

x

))
+ βv2mvxx

]
dt

∥∥∥∥
Hs

� C1T

(
sup

0�t�T

‖u − v‖Hs + sup
0�t�T

n+1∑
j=1

‖uj − vj‖Hs

+ sup
0�t�T

‖u2 − v2‖Hs + sup
0�t�T

‖D[u2muxx − v2mvxx]‖Hs

)
, (6)

where C1 may depend on ε. From the algebraic property of Hs0(R) with s0 > 1
2 , we have

‖uj − vj‖Hs = ‖(u − v)(uj−1 + uj−2v + · · · + uvj−2 + vj−1)‖Hs

� ‖(u − v)‖Hs ‖(uj−1 + uj−2v + · · · + uvj−2 + vj−1)‖Hs

� c‖(u − v)‖Hs

j−1∑
i=0

‖u‖j−1−i

H s ‖v‖i
H s . (7)

3
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Using u2muxx = ∂x[u2mux] − 2mu2m−1(ux)
2 and v2mvxx = ∂x[v2mvx] − 2mv2m−1(vx)

2, we
get

‖D[u2muxx − v2mvxx]‖Hs �
∥∥D∂x[u2mux − v2mvx]

∥∥
Hs + c

∥∥D
[
u2m−1u2

x − v2m−1v2
x

]∥∥
Hs

� ‖D[(u2m − v2m)vx + u2m(ux − vx)]‖Hs

+ c
∥∥D

[
u2m−1

(
u2

x − v2
x

)
+ (u2m−1 − v2m−1)v2

x

]∥∥
Hs

� c
(‖(u2m − v2m)vx‖Hs−2 + ‖u2m(ux − vx)‖Hs−2

+
∥∥u2m−1

(
u2

x − v2
x

)∥∥
Hs−2 +

∥∥(u2m−1 − v2m−1)v2
x

∥∥
Hs−2

)
� cM2m

0 ‖u − v‖Hs , (8)

in which s � 1 is used. From (5)–(8), we obtain

‖Au − Av‖Hs � θ‖u − v‖Hs , (9)

where θ = max
(
C3T Mn

0 , C3T M2m
0

)
and C3 is independent of T. Choosing T sufficiently

small so that θ < 1, we know that A is a contraction. Applying the above inequality and (5)
yields

‖Au‖Hs � ‖u0‖Hs + θ‖u‖Hs . (10)

Choosing T sufficiently small so that θM0 + ‖u0‖Hs < M0, we know that A maps BM0(0)

to itself. It follows from the contraction-mapping principle that the mapping A has a unique
fixed point u in BM0(0).

For s � 2, using the first equation of problem (3) derives

d

dt

∫
R

(
u2 + u2

x + εu2
xx + 2β(2m + 1)

∫ t

0
u2mu2

x dτ

)
dx = 0, (11)

from which we have the conservation law∫
R

(
u2 + u2

x + εu2
xx + 2β(2m + 1)

∫ t

0
u2mu2

x dτ

)
dx =

∫
R

(
u2

0 + u2
0x + εu2

0xx

)
dx. (12)

The global existence result follows from the integral formula (5) and (12). �

4. Estimates of solutions

In this section, we will give the regularity estimates of solutions to the regularized initial value
problem (3). Firstly, we cite two lemmas presented in [14].

Lemma 4.1 ([14]). If r > 0, then Hr
⋂

L∞ is an algebra. Moreover

‖uv‖Hr � c(‖u‖L∞‖v‖Hr + ‖u‖Hr ‖v‖L∞),

where c is a constant depending only on r.

Lemma 4.2 ([14]). Let r > 0. If u ∈ Hr
⋂

W 1,∞ and v ∈ Hr−1 ⋂
L∞, then

‖[�r, u]v‖L2 � c(‖∂xu‖L∞‖�r−1v‖L2 + ‖�ru‖L2‖v‖L∞).

Lemma 4.3. Let s � 2 and the function u(x, t) is a solution of the problem (3) and the initial
data u0(x) ∈ Hs . Then we have

‖u‖2
H 1 � c

∫
R

(
u2 + u2

x + εu2
xx + 2β(2m + 1)

∫ t

0
u2mu2

x dτ

)
dx

= c

∫
R

(
u2

0 + u2
0x + εu2

0xx

)
dx. (13)

4
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For q ∈ (0, s − 1], there is a constant c independent of ε such that∫
R

(�q+1u)2 dx �
∫

R

[(�q+1u0)
2) + ε(�qu0xx)

2] dx

+ c

∫ t

0
‖ux‖L∞

(
‖u‖2

Hq

n∑
j=1

‖u‖j−1
L∞ + ‖u‖2

Hq+1

)
dτ

+ c

∫ t

0
‖u‖2

Hq+1

(‖u‖2m
L∞ + ‖u‖2m−1

L∞ ‖ux‖L∞ + ‖u‖2m−2
L∞ ‖ux‖2

L∞
)

dτ. (14)

If q ∈ [0, s − 1], there is a constant c independent of ε such that

(1 − 2ε)‖ut‖Hq � c‖u‖Hq+1

(
1 + ‖u‖H 1

n∑
j=1

‖u‖j−1
L∞

+ ‖u‖2m
L∞ + ‖u‖2m−1

L∞ ‖ux‖L∞ + ‖u‖2m−2
L∞ ‖ux‖2

L∞

)
. (15)

Proof. Using ‖u‖2
H 1 � c

∫
R

(
u2 + u2

x

)
dx and (12) derives (13).

Using ∂2
x = −�2 + 1 and the Parseval equality gives rise to∫

R

�qu�q∂3
x (u2) dx = −2

∫
R

(�q+1u)�q+1(uux) dx + 2
∫

R

(�qu)�q(uux) dx. (16)

For q ∈ (0, s − 1], applying (�qu)�q to both sides of equation (4), noting (16) and
integrating the new equation with respect to x by parts, we have the equation

1

2

d

dt

[ ∫
R

((�qu)2 + (�qux)
2 + ε(�quxx)

2) dx

]
= −

∫
R

(�qu)�q[f (u)]x dx − α

∫
R

(�q+1u)�q+1(uux) dx

+
α

2

∫
R

(�qux)�
q
(
u2

x

)
dx + α

∫
R

(�qu)�q(uux) dx

+ β

∫
R

�q(u)�q(u2muxx) dx. (17)

We will estimate the terms on the right-hand side of (17) separately. For the first term,
using integration by parts, the Cauchy–Schwartz inequality, and lemmas 4.1 and 4.2, for j � 1,
we have∫

R

(�qu)�q(ujux) dx =
∫

R

(�qu)[�q(ujux) − uj�qux] dx +
∫

R

(�qu)uj�qux dx

� c‖u‖Hq

(
j‖u‖j−1

L∞ ‖ux‖L∞‖u‖Hq

+ ‖ux‖L∞‖u‖j−1
L∞ ‖u‖Hq

)
+

j

2
‖u‖j−1

L∞ ‖ux‖L∞‖�qu‖2
L2

� c‖u‖2
Hq ‖u‖j−1

L∞ ‖ux‖L∞ , (18)

where c only depends on j and q. Using the above estimate to the second term yields∫
R

(�q+1u)�q+1(uux) dx � c‖u‖2
Hq+1‖ux‖L∞ . (19)

5
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For the third term, using lemma 4.1 yields∫
R

(�qux)�
q
(
u2

x

)
dx � ‖�qux‖L2‖�qu2

x‖L2

� c‖u‖Hq+1(‖ux‖L∞‖ux‖Hq )

� c‖u‖2
Hq+1‖ux‖L∞ . (20)

For the last term in (17), using lemma 4.1 results in∣∣∣∣ ∫
R

(�qu)�q(u2muxx) dx

∣∣∣∣ =
∣∣∣∣ ∫

R

(�qu)�q
[
∂x(u

2mux) − 2mu2m−1u2
x

]
dx

∣∣∣∣
=

∣∣∣∣ ∫
R

[
(�qux)�

q(u2mux) + 2m�qu�q
[
u2m−1u2

x

]]
dx

∣∣∣∣
� c

(‖ux‖Hq ‖u2mux‖Hq + ‖u‖Hq ‖u2m−1u2
x‖Hq

)
� c‖u‖2

Hq+1

(‖u‖2m
L∞ + ‖u‖2m−1

L∞ ‖ux‖L∞

+ ‖u‖2m−2
L∞ ‖ux‖2

L∞
)
. (21)

It follows from (17)–(21) that

1

2

∫
R

[(�qu)2 + (�qux)
2 + ε(�quxx)

2] dx

− 1

2

∫
R

[(�qu0)
2 + (�qu0x)

2 + ε(�qu0xx)
2] dx

� c

∫ t

0
‖ux‖L∞

(
‖u‖2

Hq

n∑
j=1

‖u‖j−1
L∞ + ‖u‖2

Hq+1

)
dτ

+ c

∫ t

0
‖u‖2

Hq+1

(‖u‖2m
L∞ + ‖u‖2m−1

L∞ ‖ux‖L∞ + ‖u‖2m−2
L∞ ‖ux‖2

L∞
)

dτ, (22)

which results in inequalities (14).
Applying the operator

(
1 − ∂2

x

)−1
to multiply both sides of (4) yields the equation

(1 − ε)ut − εuxxt = (
1 − ∂2

x

)−1
[
−εut − [f (u)]x +

α

2

[
∂3
x (u2) − ∂x

(
u2

x

)]
+ βu2muxx

]
.

(23)

Using (�qut )�
q to multiply both sides of equation (23) for q ∈ [0, s − 1] and integrating the

resultant equation by parts give rise to

(1 − ε)

∫
R

(�qut )
2 dx + ε

∫
R

(�quxt )
2 dx

=
∫

R

(�qut )
(
1 − ∂2

x

)−1
�q

[
− εut − [f (u)]x

+
α

2

[
∂3
x (u2) − ∂x

(
u2

x

)]
+ βu2muxx

]
dx. (24)

On the right-hand side of equation (24), noting f (u) = ∑n+1
j=1 aju

j , we have∣∣∣∣ ∫
R

(�qut )
(
1 − ∂2

x

)−1
�q(−εut − a1ux) dx

∣∣∣∣ � ε‖ut‖2
Hq + |a1|‖ut‖Hq ‖u‖Hq (25)

6
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and for j � 2∣∣∣∣ ∫
R

(�qut )
(
1 − ∂2

x

)−1
�q∂x

(
− aju

j − α

2
u2

x

)
dx

∣∣∣∣ � ‖ut‖Hq

×
( ∫

R

(1 + ξ 2)q−1 dξ

(∫
R

[
aj ûj−1(ξ − η)̂u(η) +

α

2
ûx(ξ − η)ûx(η)

]
dη

)2) 1
2

� c‖ut‖Hq

( ∫
R

c(‖uj−1‖Hq ‖u‖L2 + ‖ux‖L2‖ux‖Hq )

1 + ξ 2
dξ

) 1
2

� c‖ut‖Hq ‖u‖H 1‖u‖Hq+1

(‖u‖j−2
L∞ + 1

)
, (26)

in which we have used lemma 4.1. Since∫
R

(�qut )
(
1 − ∂2

x

)−1
�q∂2

x (uux) dx = −
∫

R

(�qut )�
q(uux) dx

+
∫

R

(�qut )
(
1 − ∂2

x

)−1
�q(uux) dx, (27)

it follows from Young’s inequality ‖f � g‖Hr � ‖f ‖Hp1 ‖f ‖Hp2 ,
1
p1

+ 1
p2

= 1 + 1
r

and the

inequality (1 + ξ 2)l � [(1 + (ξ − η)2)l + (1 + η2)l], l > 0, that∣∣∣∣ ∫
R

(�qut )�
q(uux) dx

∣∣∣∣ � c‖ut‖Hq

×
( ∫

R

c

( ∫
R

[
(1 + (ξ − η)2)

q+1
2 + (1 + η2)

q+1
2

]
û(ξ − η)û(η) dη

)2

dξ

) 1
2

� c‖ut‖Hq

(‖̂�q+1u � û‖L2 + ‖̂u � ̂�q+1u‖L2

)
� c‖ut‖Hq ‖u‖H 1‖u‖Hq+1 (28)

and ∣∣∣∣ ∫
R

(�qut )
(
1 − ∂2

x

)−1
�q(uux) dx

∣∣∣∣ � c‖ut‖Hq ‖u‖H 1‖u‖Hq+1 . (29)

Using the Cauchy–Schwartz inequality and lemma 4.1 yields∣∣∣∣ ∫
R

(�qut )
(
1 − ∂2

x

)−1
�q(u2muxx) dx

∣∣∣∣
� c‖ut‖Hq ‖(1 − ∂2

x

)−1
�q(u2muxx)‖L2

= c‖ut‖Hq ‖(1 − ∂2
x

)−1
�q(∂x[u2mux] − 2mu2m−1(ux)

2)‖L2

� c‖ut‖Hq (‖u2mux‖Hq + ‖u2m−1(ux)
2‖Hq )

� c‖ut‖Hq ‖u‖Hq+1

(‖u‖2m
L∞ + ‖u‖2m−1

L∞ ‖ux‖L∞ + ‖u‖2m−2
L∞ ‖ux‖2

L∞
)
.

(30)

Applying (25)–(30) to (24) yields the inequality

(1 − 2ε)‖ut‖Hq � c‖u‖Hq+1

(
1 + ‖u‖H 1

n∑
j=1

‖u‖j−1
L∞ + ‖u‖2m

L∞

+‖u‖2m−1
L∞ ‖ux‖L∞ + ‖u‖2m−2

L∞ ‖ux‖2
L∞

)
for some constant c > 0.

7
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For a real number s with s > 0, suppose that the function u0(x) is in Hs(R), and let uε0

be the convolution uε0 = φε � u0 of the function φε(x) = ε− 1
4 φ(ε− 1

4 x) and u0 such that the
Fourier transform φ̂ of φ satisfies φ̂ ∈ C∞

0 , φ̂(ξ) � 0 and φ̂(ξ) = 1 for any ξ ∈ (−1, 1).
Then we have uε0(x) ∈ C∞. It follows from section 3 that for each ε satisfying 0 < ε < 1

4 ,
the Cauchy problem⎧⎨⎩ut − uxxt + εuxxxxt = −[(f (u)]x +

α

2

(
∂3
xu2 − ∂x

(
u2

x

))
+ βu2muxx,

u(x, 0) = uε0(x), x ∈ R,
(31)

has a unique solution uε(x, t) ∈ C∞([0,∞);H∞). For an arbitrary positive Sobolev exponent,
we give the following lemma whose proof is similar to that of lemma 4.4 in [1] where the
Sobolev exponent s > 3

2 is required.

Lemma 4.4. Under the above assumptions, the following estimates hold for any ε with
0 < ε < 1

4 and s > 0:

‖uε0‖Hq � c, if q � s, (32)

‖uε0‖Hq � cε
s−q

4 , if q > s, (33)

‖uε0 − u0‖Hq � cε
s−q

4 , if q � s, (34)

‖uε0 − u0‖Hs = o(1), (35)

where c is a constant independent of ε.

Proof. Using the Fourier transform leads to

φ̂ε(ξ) =
∫

e−ixξ ε− 1
4 φ

(
ε− 1

4 x
)

dx =
∫

ei(ε− 1
4 x)(ε

1
4 ξ)φ

(
ε− 1

4 x
)
d
(
ε− 1

4 x
)

= φ̂
(
ε

1
4 ξ

)
.

Furthermore, we have

ûε0(ξ) = ̂φε � u0 = φ̂ε(ξ)û0(ξ) = φ̂
(
ε

1
4 ξ

)
û0(ξ)

and

‖uε0‖2
Hq =

∫
R

(1 + |ξ |2)q |̂φ(
ε

1
4 ξ

)
û0(ξ)|2 dξ

�
∫

R

(1 + |ξ |2)q
(1 + |ξ |2)s

∣∣̂φ(
ε

1
4 ξ

)∣∣2
(1 + |ξ |2)s |û0(ξ)|2 dξ

� ‖u0‖2
Hs sup

ξ∈R

[
(1 + |ξ |2)q
(1 + |ξ |2)s

∣∣̂φ(
ε

1
4 ξ

)∣∣2
]
.

When q � s, we get

sup
ξ∈R

[
(1 + |ξ |2)q
(1 + |ξ |2)s

∣∣̂φ(
ε

1
4 ξ

)∣∣2
]

� sup
ξ∈R

∣∣̂φ(
ε

1
4 ξ

)∣∣2 � c,

which derives that inequality (32) holds. �

8
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If q > s, it holds that

sup
ξ∈R

[
(1 + |ξ |2)q
(1 + |ξ |2)s

∣∣̂φ(
ε

1
4 ξ

)∣∣2
]

� sup
ε

1
4 ξ=K∈R

[(
1 +

∣∣ε− 1
4 K

∣∣2)q(
1 +

∣∣ε− 1
4 K

∣∣2)s
|̂φ(K)|2

]
� ε

s−q

2 sup
K∈R

[(
ε

1
2 + |K|2)q−s |̂φ(K)|2]

� cε
s−q

2 ,

from which we know that (33) holds.
For q � s, we have

‖uε0 − u0‖2
Hq =

∫
R

(1 + |ξ |2)q ∣∣̂φ(
ε

1
4 ξ

)
û0(ξ) − û0(ξ)

∣∣2
dξ

�
∫

R

(1 + |ξ |2)q
(1 + |ξ |2)s (1 + |ξ |2)s |û0(ξ)|2∣∣̂φ(

ε
1
4 ξ

) − 1
∣∣2

dξ

� ‖u0‖2
Hs sup

R∈R

[
(1 + |ξ |2)q
(1 + |ξ |2)s

∣∣̂φ(
ε

1
4 ξ

) − 1
∣∣2

]
� ‖u0‖2

Hs ε
s−q

2 sup
ε

1
4 ξ=K∈R

[(
ε

1
2 + |K|2)q−s |̂φ(K) − 1|2]

� cε
s−q

2 ,

which results in inequality (34). Expression (35) is a common result since uε0 uniformly
converges to u0 in space Hs(R) with s > 0.

Remark. For s > 0, using ‖uε‖L∞ � c‖uε‖
H

1
2 + � c‖uε‖H 1 ,3 ‖uε‖2

H 1 � c
∫
R

(
u2

ε + u2
εx

)
dx,

(13), (32) and (33), we know

‖uε‖2
L∞ � c‖uε‖2

H 1 � c

∫
R

(
u2

ε0 + u2
ε0x + εu2

ε0xx

)
dx

� c
(‖uε0‖2

H 1 + ε‖uε0‖2
H 2

)
� c

(
c + cε × ε

s−2
2

)
� c0, (36)

where c0 is independent of ε.

5. Existence of solutions

Many partial differential equations have a smooth effect on their solutions. This effect admits
more regularity than the corresponding initial data (see [1, 22]). The task of this section is to
give a sufficient condition which guarantees that a solution of the generalized Camassa–Holm
system (2) exists in the Sobolev space Hs with 1 < s � 3

2 . Firstly, we use the regularized
problem (3) to estimate norms of its solutions, showing that they are bounded. When the
parameter ε is sufficiently small, the weak convergence of these solutions to a solution of the
Camassa–Holm equation (2) with the initial value u0(x) is acquired.

Theorem 5.1. If u0(x) ∈ Hs(R) with s ∈ [
1, 3

2

]
such that ‖u0x‖L∞ < ∞. Let uε0 be defined

as in section 4. Then there exist constants T > 0 and c independent of ε such that the solution
uε of problem (31) satisfies ‖uεx‖L∞ � c.

3 ‖uε‖
H

1
2 + means that there exists a sufficiently small δ such that‖uε‖ 1

2 + = ‖uε‖
H

1
2 +δ

.

9
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Proof. Using the notation u = uε and differentiating (23) with respect to x give rise to

(1 − ε)uxt − εuxxxt + αuuxx +
α

2
u2

x = f (u) − α

2
u2

−�−2

[
εuxt + f (u) − α

2
(u2 − u2

x) − β∂x(u
2muxx)

]
. (37)

Letting p > 0 be an integer and multiplying the above equation by (ux)
2p+1 and then integrating

the resulting equation with respect to x yield the equality

1 − ε

2p + 2

d

dt

∫
R

(ux)
2p+2 dx − ε

∫
R

(ux)
2p+1uxxxt dx +

pα

2p + 2

∫
R

(ux)
2p+3 dx

=
∫

R

(ux)
2p+1

(
f (u) − α

2
u2

)
dx

−
∫

R

(ux)
2p+1�−2

[
εuxt + f (u) − α

2

(
u2 − u2

x

) − β∂x(u
2muxx)

]
dx. (38)

Applying Hölder’s inequality, we get

1 − ε

2p + 2

d

dt

∫
R

(ux)
2p+2 dx �

{
ε

(∫
R

|uxxxt |2p+2 dx

) 1
2p+2

+

(∫
R

∣∣∣∣f (u) − α

2
u2

∣∣∣∣2p+2

dx

) 1
2p+2

+

(∫
R

|G|2p+2 dx

) 1
2p+2

}(∫
R

|ux |2p+2 dx

) 2p+1
2p+2

+

∣∣∣∣ pα

2p + 2

∣∣∣∣‖ux‖L∞

∫
R

|ux |2p+2 dx (39)

or

(1 − ε)
d

dt

(∫
R

(ux)
2p+2 dx

) 1
2p+2

�
{
ε

(∫
R

|uxxxt |2p+2 dx

) 1
2p+2

+

(∫
R

|f (u) − α

2
u2|2p+2dx

) 1
2p+2

+

(∫
R

|G|2p+2 dx

) 1
2p+2

}
+

∣∣∣∣ pα

2p + 2

∣∣∣∣‖ux‖L∞

(∫
R

|ux |2p+2 dx

) 1
2p+2

, (40)

where

G = �−2

[
εuxt + f (u) − α

2

(
u2 − u2

x

) − β∂x(u
2muxx)

]
.

Since ‖f ‖Lp → ‖f ‖L∞ as p → ∞ for any f ∈ L∞ ⋂
L2, integrating (40) with respect to t

and taking the limit as p → ∞ result in the estimate

(1 − ε)‖ux‖L∞ � (1 − ε)‖u0x‖L∞ +
∫ t

0

[
ε‖uxxxt‖L∞

+ c

(
‖f (u) − α

2
u2‖L∞ + ‖G‖L∞

)
+

|α|
2

‖ux‖2
L∞

]
dτ. (41)

For an arbitrary natural number n, using the algebraic property of Hs(R) with s > 1
2 ,

inequalities (13) and (36) lead to

‖un+1‖L∞ � c‖un+1‖
H

1
2 + � c‖un+1‖H 1 � c‖u‖n+1

H 1 � c, (42)

10
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from which we obtain ‖f (u) − α
2 u2‖L∞ � c. Applying u2mux = ∂x[u2mux] − 2mu2m−1u2

x

yields

∂x[u2mux] = ∂2
x [u2mux] − 2m∂x

[
u2m−1u2

x

]
,

which results in

‖�−2∂x(u
2mux)‖L∞ � c

(‖�−2∂2
x (u2mux)‖L∞ + ‖�−2∂x

(
u2m−1u2

x

)‖L∞
)

� c
(‖�−2(1 − �2)(u2mux)‖L∞ + ‖�−2∂x

(
u2m−1u2

x

)‖L∞
)

� c
(‖�−2(u2mux)‖

H
1
2 + + ‖u2mux‖L∞ + ‖�−2∂x

(
u2m−1u2

x

)‖
H

1
2 +

)
� c

(‖u2mux‖H 0 + ‖u‖2m
L∞‖ux‖L∞ + ‖u2m−1u2

x‖H 0

)
� c �

(‖u‖2m
L∞‖u‖H 1 + ‖u‖2m

L∞‖ux‖L∞ + ‖u‖2m−1
L∞ ‖ux‖2

L∞
)

� c
(
1 + ‖ux‖L∞ + ‖ux‖2

L∞
)
, (43)

from which we have

‖G‖L∞ =
∥∥∥∥�−2

[
εuxt + f (u) − α

2

(
u2 − u2

x

) − β∂x(u
2muxx)

]∥∥∥∥
L∞

� c
(‖�−2uxt‖

H
1
2 + + ‖�−2u2

x‖H
1
2 + + ‖�−2∂x(u

2muxx)‖L∞
)

+ c

� c
(‖ut‖L2 + ‖u‖2

H 1 + ‖ux‖L∞ + ‖ux‖2
L∞

)
+ c

� c
(‖ut‖L2 + ‖ux‖L∞ + ‖ux‖2

L∞
)

+ c, (44)

where c is independent of ε. Using (15) and (44) results in∫ t

0
‖G‖L∞dτ � c + c

∫ t

0

(
1 + ‖ux‖L∞ + ‖ux‖2

L∞
)

dτ. (45)

Moreover, for any fixed r ∈ (
1
2 , 1

)
, there exists a constant cr such that ‖uxxxt‖L∞ �

cr‖uxxxt‖Hr � cr‖ut‖Hr+3 . Using (15) and (36) yields

‖uxxxt‖L∞ � c‖u‖Hr+4

(
1 + ‖ux‖L∞ + ‖ux‖2

L∞
)
. (46)

Choosing q = r + 3, u = uε in (14), we have

‖u‖2
Hr+4 � ‖u0‖2

Hr+4 + ε‖u0‖2
Hr+5

+ c

∫ t

0
‖u‖2

Hr+4

(
1 + ‖ux‖L∞ + ‖ux‖2

L∞
)

dτ. (47)

Making use of (33), (36) and (47) gives rise to

‖u‖2
Hr+4 � ε

s−r−4
2 + εε

s−r−5
2 + c

∫ t

0
‖u‖2

Hr+4

(
1 + ‖ux‖L∞ + ‖ux‖2

L∞
)

dτ, (48)

from which we derive

‖u‖2
Hr+4 � ε

s−r−4
2 exp

[
c

∫ t

0

(
1 + ‖ux‖L∞ + ‖ux‖2

L∞
)

dτ

]
. (49)

It follows from (46) and (49) that

‖uxxxt‖L∞ � cε
s−r−4

4
(
1 + ‖ux‖L∞ + ‖ux‖2

L∞
)

× exp

[
c

∫ t

0

(
1 + ‖ux‖L∞ + ‖ux‖2

L∞
)

dτ

]
. (50)

11
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Applying (41), (45) (50) and 0 < ε < 1
4 , we obtain

‖ux‖L∞ � ‖u0x‖L∞ + c

∫ t

0

[
ε

s−r
4

(
1 + ‖ux‖L∞ + ‖ux‖2

L∞
)

× exp

(
c

∫ τ

0

(
1 + ‖ux‖L∞ + ‖ux‖2

L∞
)

dζ

)
+ 1 + ‖ux‖L∞ + ‖ux‖2

L∞

]
dτ. (51)

�

It follows from the contraction mapping principle that there is a T > 0 such that the
equation

‖W‖L∞ = ‖u0x‖L∞ + c

∫ t

0

[
ε

s−r
4

(
1 + ‖W‖L∞ + ‖W‖2

L∞
)

× exp

(
c

∫ τ

0

(
1 + ‖W‖L∞ + ‖W‖2

L∞
)

dζ

)
+ 1 + ‖W‖L∞ + ‖W‖2

L∞

]
dτ (52)

has a unique solution W ∈ C[0, T ]. Using the theorem presented on page 51 in [18] or
theorem II in section I .1 in [23] derives that there are constants T > 0 and c > 0 independent
of ε such that ‖ux‖L∞ � W(t) for arbitrary t ∈ [0, T ], which leads to the conclusion of
theorem 5.1.

Using theorem 5.1, lemma 4.4, (14), (15), notation uε = u and Gronwall’s inequality
result in the inequalities

‖uε‖Hq � ‖uε‖Hq+1 � c exp

[
c

∫ t

0

(
1 + ‖ux‖L∞ + ‖ux‖2

L∞
)]

dτ (53)

and

‖uεt‖Hr � c
(
1 + ‖ux‖L∞ + ‖ux‖2

L∞
)

exp

[
c

∫ t

0

(
1 + ‖ux‖L∞ + ‖ux‖2

L∞
)]

dτ, (54)

where q ∈ (0, s], r ∈ (0, s − 1] and any t ∈ [0, T ]. It follows from Aubin compactness
theorem that there is a subsequence of {uε}, denoted by {uεn

}, such that {uεn
} and their

temporal derivatives {uεnt } are weakly convergent to a function u(x, t) and its derivative
ut in L2([0, T ],H s) and L2([0, T ],H s−1), respectively. Moreover, for any real number
R1 > 0, {uεn

} is convergent to the function u strongly in the space L2([0, T ],Hq(−R1, R1))

for q ∈ [0, s) and {uεnt } converges to ut strongly in the space L2([0, T ],H r(−R1, R1)) for
r ∈ [0, s −1]. Thus, we state the existence of a weak solution to equation (2) in the following.

Theorem 5.2. Suppose that u0(x) ∈ Hs with 1 < s � 3
2 and ‖u0x‖L∞ < ∞. Then there

exists a T > 0 such that equation (2) associated with the initial value u0(x) has a weak
solution u(x, t) ∈ L2([0, T ],H s) in the sense of distribution and ux ∈ L∞([0, T ] × R).

Proof. From theorem 5.1, we know that {uεnx}(εn → 0) is bounded in the space L∞.
Thus, the sequences {uεn

}, {uεnx} and {u2
εnx

} are weakly convergent to u, ux and u2
x in

L2([0, T ],H r(−R1, R1)) for any r ∈ [0, s − 1), separately. Hence, u satisfies the equation

−
∫ T

0

∫
R

u(gt − gxxt ) dx dt

=
∫ T

0

∫
R

[(
f (u) +

α

2
u2

x

)
gx − α

2
u2gxxx − β(u2mux)gx − 2mβu2m−1u2

xg

]
dx dt

(55)

with u(x, 0) = u0(x) and g ∈ C∞
0 . Since X = L1([0, T ] × R) is a separable Banach space

and {uεnx} is a bounded sequence in the dual space X∗ = L∞([0, T ] × R) of X, there exists

12
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a subsequence of {uεnx}, still denoted by {uεnx}, weakly star convergent to a function v in
L∞([0, T ] × R). As {uεnx} weakly converges to ux in L2([0, T ] × R), it results that ux = v

almost everywhere. Thus, we obtain ux ∈ L∞([0, T ] × R). �
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